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PREFACE

This ig one of 2 geries of RAND Mesporauda oo digital computer
slmulation, Preceding work oo this subject has been described in
G. 5. Fishman, Digital Computer Simulation: The Allocation of Computer
Time in Comparing Experiments, The RAND Corporation, EM-3288-1-PK,
October 1967, and P. J. Kiviat, Digital Computer Simulation: Modeling

Concepts, The RAND Corporation, RM-3378-PR, September 1967. The purpose
of thig Memorandum is to describe a number of statistical problems that
materialize during computer simulation experiments. The Memorandun
gives references (when they exist) that will agsist an experimenter in

resolving these problems.
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SUMMARY

Thi¢ Memorandum describes & number of statistical problems that
arisz in computeyr slmulation experiments. Fallure to regolve these
problems adequately can significantly degrade the value of experimental
resylty, ZRAsferences ave glven that should assist an experimenter io
handling them.

The Memorandum describes three principal problem areas: veriflca-
tion, valldation, and problem analysis. Verificatlon {nsures that a
simulation model containing 8 mathematical structure and a data base
behaves as an expevimenter inteands. The complexity of models often
makes it difficult to detemmine whether their basic operating assumptions
are satiafled.

Validation tests the agreement between the behavior of a simclation
model and the observed behavior of a real system. This requires sumpiri-
cal data. If a behavicral equivalence can be established between 3 simu-~
lation wodel and a real system, we may vegard the behavior of the model
and the system as being consistent. Since a simulation wmodel is cften
sxarcised with modificaticns that do not cuwviiuily exiat in a real sys-
tem, it {3 {mportant that a benchmark of consistency be established
whenever possible to provide confidence for extrapolations.

Problem snalysis embraces a host of statistical problems relating
to the collection, reductlion, and presentation of data generated by
computer simulation. The choice of sampling intexval, the use of vari-
ance reduction techrniques, and the estimation of reliability are probdb-
lems common to all simulatfon experiments containing random phenomena.
These and sim{lar problems are considered and references are given to

discussions and solutions.
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1.  INTRODUCTION

Mapy systewm almulatisn experiments are driven by Lloput processes
contalning elements of randow behavior. In such siswlations, siatisgil-
csl reliability waist be consldered {f experimentsl results are o be
interpreted properly. Staristical considerations also enter ings the
evalustion of simulation model designs. This Memorandum describes
these considerations, identifving how and wheve they become Important
during the planning, performance, and analysis ¢of simulation experiments.

The description can be viewed as tracing the elements of & typical experi-

SR

ment from inception through analysis, defining stetistical problems and
relating them to the formal body of sczatistical theory.

The preblems described are inherent in all stochastic system simu-
lation models. An experimental deeign's ahility to reveal useful in- '
sights into a system depends to a great extent on how well these prob-
lems are solved. Failure to deal with them may cauge errors in inter-
preting cbserved associations bebween system input and output. One
common error {8 the underestimation of the rellability of syatem response
measyrementa, caused by failure to account for autocorrelstion in system
regponse time series genevated by a simulation model. Another frequent
source of error is the assumption that randowm mumbers geperated within
a slmuistion model are independent, when in fact the method of random
number generation employed induces unwanted correlation.

Our aim i3 tco promote awareness of problems, not to solve them.

The study offere no general solutions, but provides references germane
to the statistical problems described. Some referenceg describe parti-
cular sclutions; others offer methods of acalysis.

To understand the role of statistics in system simulation experi-
ments, a knowledge of how these experiments developed is helpful.

Systesm simulation may be regarded as an extension of Monte Carle methods.
These methods, which concern experiments with raasdom numbers, began thelr
systematic development during World War IX when they were applied to
problems related to the atomic bomb. The work fwolved divect simula-
tion of probabilistic problems concerned with random neutron di{ffusion
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in fiesionable material [11]. Shortly thereafter, it was proposed

that Monte Carlo methods be applied to solve cevtain integral equations,
occusring in physics, thsi weie not amenable t» analytical sclution.
Stechastic procvesses often existed whose parametors satisfied these
equations. One could ostimate thesz parametevs {(and hence ths sclulion
to the equations) by perfovming Monte Carlo experimenis on the stochas-
tic processes.

The reliability of parameter estimates was the dominant statisti-
csl problam in these Monte Carlo expevimeats. Since the estimaces
were generally the sum of independent, identically distributed random
variables, their reliability was inversely proportional to n%~-a 10-
percent improvement in reiiabllity required a 100-fold increase in
cample size. For many problems, random sampling was prohibitively
expensive even with digital computers. The crucfal statistical prob-
lem was finding ways of reducing the vavisnce of an estimator for a
given sample size. A number of these variance reduction methods are
degcribed in [23). A particularly useful variance reduction technique
known as the method of antithetic variates is described in Bammersley
and Handscomb [117,

The contept of system simuslation became a reality in the early
1956's, when there was a shift in emphasis from looking at parts of a
problem to examining the simultaneous inmteractions of all parts. This
shift was at least partially due to the fact that system sSimulation
experiments had become feasible on digital computers, which were under-
guing ordev-of-mugnitude advances in speed. Simulation made it possible
to carry out fully integrated system analyses which were gemerally fay
too complex to be carried out analytically. This was especially true
for studfes of the interactions among parts of a system,

In the past decade, the sbility to model complex systems has greatly
improved. Specialized computer simulation languages such as GPSS,
SIMSCRIPT and SIMULA offer convenient formats for describing systewm
problems. Along with the improvements, however, have come a number of
statistical problems, few of which have been satisfacterily solved, In

fact, some of them have not even been recognized yet as serious problems.
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Verification, validation, and problem analysis are tasks dewanding
careful statistical consideration. Verificatlon determiues whether a
model with a particulax mathematical structure and data base actually
behaves as an experimenter assumes (£ does. Validaltion fests whether
a4 simulation wodel reasonably approximates s real system. Probles
analysis seeks to insuve the proper execution of the simulation and
proper handling of its results; comsequently it deals with a host of
matters: the concise display of solutions, efficient allocation of
computer time, proper design of tests of comparison, and correct
estimates of sample sizes needed for specified levels of asccuracy. ‘

In other words, verification and validation insure that a simula-
tion model s properly designed; only after a model has heen verified
and validated can an experimenter justifiably use a model to probe
system behavior. Problem analysis mainly deals with the results of
experimental probing,

Of the remaining sections of the Memorandum, Sec. II provides
some necessary definitions and motivation, Secs. IIX and IV discuss
problems assoclated with the design and proof-testing of a simulation
model, and Sec. V considers problems associated with the use of sim~
lation models. The format of the last three sections is: preseutation
of problems, brief discussion of advised solutions, references to

relevant literature.

!
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11, SIMULATION MODELS

The conceptz discussed fxom hefo on can best be understood in the
context of a typical simulation model. This sectiocn defines a number
of terms used in succeeding sections, examines a typical model to show
these rterms in thelr proper context, sand indlcates some problem areas
connectad with model structure and data systems that should concermn
every model-builder.

Bvery simulation model comprises two systems -~ a data system
and 3 loglcal system. Both present a model-builder with problems;
hoth contribute equally to the validity of a final simulation model.

When we [irst ivok at a simumlation wodel we see its logical
structure~-the way in which a system's operations have beean analyzed
and factored into discyete units, and these units combined so that the
model caa be made to reproduce tha system's behavior. When we look
at a model more deeply, we see that it contalns sequences of data
comparisong and logical tests. These tests cause a model to take
different actions depending on numerical values that are either input
from the world ocutside its boundaries or computed within, The model’s
behavior i3 conditioned by thege data values, and its results are
gensitive to data representations and methods of dats generation,

Consider the simple one-machine shop with a waiting line, shown
in ¥Fig. 1. Items arrive at the mechine for processing; the arrow
coming from the left shows the jobs arriving with average arrival rate
. If the machine is free when a job arrives it immediately beginsg
service, which is performed at an average service rate u. A job
that arrives when the machine is engaged waits in line until it can
be processed. The waiting line is pictured as & box] in a real
system it might be a tote box or a pile of partially completed parts.
When a job is completed it leaves the service facility {arrow going
to the right), freeing the machine for anocher job. If jobs are
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waiting in the line {queue}, one is selected for sexvice according to

a gueue discipline and the machine ig engaged again., I1f no jobs are

welting, the machine remains idle uatil the next job arrival.

ARRIVAL A

[ S

line

Waiting

DEPARTURE

Fig. 1 ~- Simple machine shop model

Systems such as this, in which jobs arrive, possibly wait in

queues, and are serviced are called gueueing systems. Almost all

simulation awdels have queueing systems imbedded in them.

Simulating a system Llike the one described requires the definition

of events that tuke place during its operation.

Events occur at polats

in time when system activities begin and end; Lf an activity has no

duration, e.g., a decision made &t an instant in time, it only has one

related svent.

A groas representation of the logical stxucture of a queueing
system is showm in Fig. 2.

and jobs being serviced.

the first N johg that arrive be dencted jl’ jz, .

The activities pictured are jobs arriving

Jobs arrive at the shop at random times. Let

.y js, and their

arrival times be denoted tys Byy oe, By Then the times between job
arrivala are: dl - (t1 -

tgry dy = (5 -

£,

oy = Gy - -

Inputs to the queueing system are glmulated by generating job arrivals
at the service facility; interarrival times rather than arrival times
are upually used. When a job arrives, the time when the next job will

arrive lz computed by ygndom eampling from an {nterarrival time distri-
butfon. Two data problems assoclated with this simulation are deter-
mining the correct scatistical sampling distribution and generating
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rsndrm samples fyom it. Section IV discusses some problems concerned
with selecting 4 sampling distribution. Hethods for generaling random
samples from varlous statistical distributions can be found in [4]

and [24].

ARRIVAL ACTIVITY SERVICE ACTIVITY

Jab

enfers queue
=1 {f mochine
. Is busy

Fig. 2 -- Basic queueing model

& sequence of job arrival times constitutes a sample from a

simulation input process. Each arrival generates an interarrival

time for the next job and a service time for ltseif. Pigure 3 illus-
trates the arrival event In some detall showing the sequence of simu-
iatlon activities: the generation of an interarrival time and a
service time, and placement of a new arrival in process or in queue.*
When = job arrives it {s placed in service if the server (s free;
ctherwise, it is placed in queue. Call the service times for the N
Jjobs that entex the shop 835 89, o, By The sequence of service
times also constitutes & simulation input process, ss random sawples

are dravn from some service time distribution whenever a job is pro-

ceagsed. For each job that passes through the shop, two (random) gquan-

tities must be determined -- d1 and 8. The quantity di determines

*
The nctation used in Fig. 3 is taken from ?. J. Kiviat, Digital
Computer Simulation: Modeling Concepts, RM-5378-PR, September 1967,

s
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Arrival
event

Determine
time of next
arrival

Schedule amvul
of nex! job

Deiermme
service time of

this job

Put NO
job in
aueue

YES But

job in service

\

f Schedule end)

\_ of service

Server free
7

/S Wait
{ for end of
service

Fig. 3 -~ Arrival event

the time when a job enters the shop, 8 determines the time it spends

in process. In this model, both of the quantities d, and s, are gen-

evated whan a job enters the shop; in a slightly modtfied v:ralon of
the model the service time might not be generated until the job is

actually put into servies. Regardless of the time {or place in the
model) when these values are generated, they '"belong"” to the job and

determine {ts experience in the system,
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All simulation models are driven by some bazic force, generally
the arrival of a task,; joh; or reguest of some gort in the simulated
system. Each job's progress through the system is detemrmined by two
secs of factors: its characteristics, and pressures eyerted by the
system, Job characteristics can be few or many; in our simple model
thare are two, an arrival time and a service time. Thase chavactaris-
tics can be generated at ooe time or at different stages in a job's
1ife as it passes through a simulated system. Hegardless of where
they are generated, they belong to a job and contribule to {ts simu-
lated behavioer,

A job with n characteristics can be described by a list of these
characteristics which we call an n-tuple. A job in our queveing model
is characterized by a 2-tuple (di’ s‘). A typical problem encountered
when constructing a simulation model is the generation of job charac-
teristics; an important problem encountered while checking out a simu-
lation model is the examination of a sequence of generated job chayac-
terizations, as we call these n-tuples.

As Fig. 3 shows, a job does aot necessarily have to pass directly
through the ghop; it can wait {n line while other jobs are being pro-
cessed. If TL denotes the time tha: job i leaves the shop, then
v, = Ti -8, is the time it spends waiting for service. The
sequences 1‘1, 22, vy TH and Wis Vs es, Wy aze simulation output
procegaes, sequences of variables whose values are determined by the
activities that take place within the simulation model. If the model
is designed so that certain fobs have priority over cthers, then low-
priority jobs will have long walting times; if it is designed with a
sexvice faclility that shuta down periodically for repairs and rest peri-
ods, then the sequence of jobs that exit from the shop will reflect this.

A simulation model is designed to generate output processes that
can be studied to cbserve a system's behavior as its data and/or
logical structure are changed. Data influence a model through the
selection of statiatical sawpling distributions, random sampling

procedures, and activity levels. The rate at which jobs arrive and

are serviced, X and | respectively in Fig. 1, are activity levels
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that specify the intensity of system operations. Figures 3 and 4
illustrate some influcices that wodel structure éxertis on a simzlatlon

study.

Remove o
job from queus

NO i

Put
job in service

job in queue
?

Schedule end

of service

Fig. 4 -- End of service event -

The pgperating rules used to select a job from a waiting line
clearly are part of the model structure and influence system behavior.
A complex model generally contains many different kinds of operating
rules: decislon mechanisms, search and cholce procedures, and
scheduling heuristics are some that are found most frequently. We
have chosen a queue discipline to {llustrate the effect of an operating
rule in a model. A rule under which jobs that have short processing

times are selected first will produce a gequence of T, 's close to one
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anothar followed by sequences with greater vailues, The chavacter of
the output process will be different under thigz rule from the output
under a rule that selects jobs i{n another way.

A simulation model must therefore be examined in two wcvs,
i1ts data sst be examined, both with regpect feo the particular rapre-
sentations chosen and the way the model selects samples in its simula-
tion process; and its stiuctore sust be examined fo see that mechanigmy
have been chosen thaf produce correct system response, Both data and
structure are important, both pose statistical problems in gnalysis
and avaluation, Section I1II treats in detail the problems cutlined in
the above example,

EOMTORLA s ¥ e sk 14
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ILI. VERIFICATION

DATA VERIFICATION '

Inputs in most simulation experiments consist of jobs 3f some
sort, cach characterized by a sequence of random wvarisbles. In the
simple gueueing model each job g charsctericzed by an interarrival
time and a service time. Each job affects the system to an extend
determined in part by the values of Llis coryesponding 2-tupls. In
general, simulation experiments measure the response of a system to
different sequences of Input n-~tuples.

In most system simulation models the elements of job n-tuples
are independent random variasbles and sequences of n-tuples are inde-
pendent multivariate random varisbles. The n-tuple elements are
tranaformations of pseudorandom numbers drawn from a uniform distri-
bution on the unit interval. To each n-tuple characterizing a job,

the~e cerresponds an n-tuple of uniformly distributed random varxiables.
If the model design is proper, the elements of this latter n-tuple
should be independent and uniformly distributed, and so should be

the sequences of these n-tuples.

Absence ¥ independence i{n generated samples implies that the
assumptions of the model do not hold. Verifying independence assump-
tions is the first rzat{stical problem arising iu system similation
experiments. Since the tes%s of Independence in no way relate to
proposed system structure, one may check the pseudorandoz oumber
generator quite separciely from other considerations.

The most fmportact Lypothesis to test {s that the pseudorandom
number generator creatss sajyuences of Independent random variables.
Suppose we collect m pseudorandom numbers. If we divide the unit
interval {ntc k class Intervals and let x, be the number of observations

i
in interval {, then for sufficiently large m we may regard the gtatistic

e verniBre Aot ARR ISl NERUERS
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&3 balng xz distributed with (K ~ 1) degrees of freedom.
Mann and Wald {17], whe have studied the problem of choosing &
according %o some “best criterien," suggest

2,1/5

k= 42(m - 1)%/c
where

o2
(h}-z/zj e X /2 dx = .

<

Cochran [ 1] describes the sease in which this choice of k is best.
For our purposes, the Mann and Wald criterion seems reasonable. I1f
xz exceeds xi,l’ o' o being the confidence level, we reject the hypo-
thesis., 7This test or an equivalent one has been performed on most
pseudorandom number generators and, therefore, our mentloning it is
principally for completeness.

The xz test alsc appliies in testing the Independence of n-tuples,
but ilnstead of working with the unit interval we divide the n-dimenslional

unit surface into &k n-cubes of equal volume and deflne x, as the number

of n-tuples in the ith n-cube. MacLaren and Marsaglia [ié] apply this
test to the output of several pseudorandom number genevators for palrs
and triples. Thelr results show a number of standard generaters to

be suspect.

The xz test concerns questions of randomness and makes no use of
the way in which a particular method generates random numbers. Coveyou
and MacPherson [5], who offer a unified theory of the statistical
behavior of n-tuples of pseudorandom generators, conclude that currently
there 1s no better methcd of generating n-tuples than the simple multl-

plicative congruence method, r = riU(mod Zp), with a carefully

i+}




chosen miltiplier, U. They deseribe how to choose the sultiplier, and
discuss the effects of computer word length on generated sequences.

A departure from the independence assumption can significantly
affect sxperimental results. The following example lllustrates this
peint, Let z and v be psegudovandom numbers that are gsultably trans-
formed; g{x} is used as an intergrrival time and n{y} 28 » service

time. Pigure 3 shows the square over which the pair x, y are uniforamly
distributed.

|

1.0
I 1t
£ P,
.8
11} v
Py P
¢ il 3
¢ .8 1.0
Fig. S

Let B; be the probabllity of %, y being in the &0 square, If
pairs are independent, then

p, = L/4 Lml, 2, ..., 4

Suppose, however, that Py is greater than Py. p3 and P, If intex-
arrival and service times are increasing functions of x and y,
respectively, then we would expect short [nterarrival tlmes and long
service times to occur together more often than theory suggests. This

would cause an upward bias in the walting times and queue lengths
obsexved in the simulation model.
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In more coaplex models, rhe absgace of independence among n-tuplas
{3 moys difficult to assess. Verifylng that a data source satisflies
the independence assumption will always be of value, however, if an
incorrect interpretation of results is to be avoided. References [3])
and {18} offer helpful information to an experimenter in choosing a
pseudorandom generator.

In some simulation experiments, corrglated sampliug Ls necessary,
Suppose we are simnlating the demand for aircraft tires; rhen tire wear-
out is clearly related to the number of aircrait landings., Simsiations
of economic behavior often contain autocorrelated input processes, e.g.
autounomous lovestment, BReferences [7) and {21] describe methods for
generating correlated samples and [19] describes procedures for sampling
from two kinds of autocorrelated processes.

Tocher [24] has pointed out that correlated sampling is often dif-
ficult to perform because of the onerous and often impoasible task of
collecting sufficlent information to describe desired distributions.
Verification gnd validstion should clearly be applied to correlated
sampling. The peculiar circumstances surrounding different kinds of
correlated sampling make it difficult to suggest a generally applicable
method. Since all sampling ultimately depends on sequences of indepen-
dent yniformly distributed random numberwz, the least that can be doue
is to test the hypothesis that succesalve numbers and sequences of
nusbers are Ilndependent.

STRUCTURE VYERIFICATION

Verifying the structure of slimulation models means examining sube
structure cutputs and determining whether they behave acceptably. One
value of this exercise is that {t identifies unwanted system behavior.
Very aminor simplifying assumptions can generate outpult processes whoue
behavior differs considerably from what is desired. Structure verifica-
tion {s also valuable for determining whether one may substitute an
analytical or simple simulation substructure {or 3 complex one. This
may be done If a behavioral equivalence can be established between the
simple and complex structures. The advantages of substlitution accrue
from the better understanding of the analytic or simple simulation struc-
ture and from savings in computatlon time during simulation.
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To make behavioral comparisons, we requivre a probability model.

The sodel must be sufficiently general to include the variety of
phenomena encountered In simulation models, yet it must be restrictive
enough to perwil reagonably straightforward hypotheafs testing., Systes
simelations usually are concerned with series of interrelated events
and an apypropriate probability wodel must explicitly recognize
interrelationships between past, present and future events. Since
these sgsociations ave time-dependent, we refer to them as intertemporsl
dependence.

In Ref. [10], the writers sugpest the class of covariance station~
ary stochastic processes az a convenlent smodel for studyiag simulation-
generated time series. The reasons for this choice are the valuable
conceptual ingights that these processes afford 8s well as the ease
with which certain ¢f their sample statistics {principally the spectrum)
can be used in hypothesis testing., We firszt formally define a covari-
ance stationary process and then discuss the meaning of some of its
population parameters.

Let X: be g random varisble generated by a simulation model and
recorded at time t. If {Xt; t=0,+1,+2, ..., + s} is a stochastic
process such that E(xtxt+f> is finite and independent of t for ail «,
then {xt} is covariance stationary. If the random variables Xt and

xc+1 are not independent for some 1 ¥ O, then {xt} is autocorrelated

or linearly dependent. OQutput processes generally satisfy the covari-
ance stationary assumptions and exhibit intertemporal depeadence. The
theory of covariance stationary processes provides a convenient frame-~
work within which to study the nature and extent of autocorrelation,

the priuncipal form of intertemporal depeadence.
The autocevariance function

R = B(XX,, ) - [E(xp]?

summarfzes all information concerning the autocorrelation present in
[xt} . The gpectrum

o
g = (m PP R 0sasn

-
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provides the same i{nformation, and in the wricers' opinion s the pre-

ferved funciion to examine both for conceptusl and statistical reasons
{10]}.

The aurocovariance function R messuves the covariance between the

tandon variables xt and Xt+q' For the class of processes with which
we gre concetned this function diminishes, though not necessarily
wmonotonicslly as iw} increases. This property accords with reality,

where the influence of the past wesrs off as time elapges. The gpectrum

events in terms of a contionuvum of frequency compoments. Since

et
By =} slod,

P,
5
g permits us to study wean-gsquare variation in a series of interrelated %

0 %

we may regard the variance Ra a3 being made up of infinitesimal contrie
butions g{i}d) in small bands dx around each frequency. The spectrum g
may be considered a variance decomposition with each component bheing
associated with a specific frequeancy. Low frequencies correspond to
long flucruations in {Kt}; high frequencies correspond to rapid fluc-
tuations. If & peak occurs in a spectrum, the corresponding frequency
influences the appearance of {Xt} to & greater extent than the remaining g
frequencies. A process with a peak at a non-zero frequency in fact dis- :
plays something of a perindic appearance with its period corresponding
approximately to the frequency at which the peak appears.

When the subscript t denotes time and xt is an observation at time
t, observations are collected at equal intervals on the time axis, Since
t is only an index, it need not necessarily refer to time; any series of
events can generate a time series. For example, in the simple queueing
problem t may denote the tth job to recefve service and xt may be the
waiting time of this job. Here {xt} iz a series of waiting times arranged
in the order in which their corresponding jobs receive service.

Interactions betwsen input and structure may often create unwanted
periodicities in the cutput, This possibility Is not as remote as one
would like to think, for Slutzky {22] long ago showad that the linear
summation of purely random events can appear regularly periodic. Since
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peaks in 2 spectrum corzespond to pericdic components in {Xt} and
since the sharper a peak {5, the morxe regular its periodiclircy is,
examining the sample spectrum pecsmits an experimenter to determine
whether any periodicities exist and te estimate the extent of their
regularity.

Pigura 6 shows the sample spectrum of gqueus length for a slagle-
server queueing model with exponentially distributed interarrival times
and constant service time. The peak at 0.05 cveles per hour and ite
harmonics suggeat the prasence of periodicity. This behavior can be
explained as follows. Whenever jobs are queueing, a periodic reduction
in gueue length coccurs every 20 hours. With a constant service time,
jobs emerge from the service facllity at a fixed perlodic rate, creating
& periodic appearance. If this efflux ts the inpul to ancther service
faciliry, then this Input is perfodic whenever jobs are gqueueing in the
first facility.

Two points motivate sur concérn about periodicities. First, their
presence may be contrary to our intentions. Second, since the output
of one substructure is usually the laput to another, the effects of
pericdicity may propagate themselves throughout the remaining substzuc-
tures. It is a property of substructures that they exhibit the charac-
teristica of electromechanical systems and can have a natural or a
resonant frequency., If @ substructure is excited by a frequency close
to its natural one, its response at that frequency i£ conslderably
exaggerated compared to that of others. The strength of a pericdic
component may therefore increase as it propagates through a system,
obscuring the behavior of remaining componeats.

Conclusiens drawn from the cutput of such a system may them be
misleading. For example, one might suppose that the Iinputs to certain
model subsystems are random phenomena whereas they actually appear in
a model as regular or strongly pericdic impulses. If this is so, rules
sppropriate for controlling randomly varying inputs may be judged in-
appropriate. The performance of the rules will be judged in an environ-
ment different from that for which they were designed.

As mentioned earlier, economy of detail aids understanding and
saves computation time, The ease with which computer simulation lan-
guages permit one to describe complex behavior carries with it the

A B

L aae

o Bheon e BRSES




~18-

[

oWy BITAIBS JURIEUOD Y3ym uwnizdsde yiBuar-anend pajemIIeyk -- 9 *813

Q'O

anoy/sa1a4o uy Aosusnbaag

[+7'4d

g.

g.

§%°

a*

A.b.

e,

a

100

w0

N’.

ot

a*ot

0007

Sali s e

wnijoads Bog

S O N

denoenetzas ot




P S

"&mm«mmmm .-

]

s,

)

-19-

danger of too much detall., Since a detalled model has more bulit-in
agsumptions than a simple model, i€ generally requiresz a lenger

lesrning period for a prospective user. 1In addition, simulating these

ekttt Sl T R

details can consume vast amounte of computer time. f several models
offer the same response to & given input, the simplest model is
advantageous, It is desirable to test several models to deternine

the adesquacy of each and then choose the simplest among the acceptable
ofies .,

Suppose that a complex model behaves as required and we wish to
test the equivalence of a simpler model. If at all possible, the
simpler model should be compared with the true enviromment. When this
cannot be done, the responses of the simple and complex models should
be compared for a given imput. The comparison tesis the hypothesis

that certain population characteristica, for example, means, variances

[P

or spectra, are ldentical for both models.

Since intertemporal dependence {s often an important characteristic
of models, and its mean-square variation is described by the spectrum,
one may compare mean-square intertemporal dependence by testing the
equivalence of spectra of two models, Jenkins [15] and Fishman and
Kiviat [10] describe an appropriate testing procedure.

While it {s true that higher-order eflects may be dissimilar in
the two models, a comparison of spectra can do much toward determining
whether further comparisons are useful. The test is simple. In
additicn, when the null hypothesis of no difference is rejected, the
comparison of spectra permits one to identify where in the structures
of the two models the departures oncur. With this knowledge, one may
perhaps modify the simple structure to more closely match the complex
one.

Verifying a model's structure protects an experimenter against
creating anomalous responses, allows for a justifiably simple design,
and saves computer time. It {s a natural imperative to verify both
data and structure before a model is used in order to minimize compli-
cations that can arise in the course of an experiment. FPailure to
verify has created more than one embarrassing situation in interpreting

output,

.
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IV, VALIDATION

DATA VALIDATION

Validating a model meanc establishing that it resembles its
actual system ressonably well. 1If a wodel describes some hypothetical
system, then no validation can ocecour. A4lso, if no numévical data
exigt for an actual system, it is not possible to establish the gquanti-
tative congruence of & model with reality. The ideass of this section
rherefore only apply when numerical data exist for some or all of an
actual system,

Sampling from a theoretical rather than an empirical distribution
is generally considered preferable, since it exposes a simulated system
to the universe of possible stimuli rather than merely to those that
have occurred in the past. Often, graphical methods suffice to judge
the validity of theoretical distributions. 1If, for example, we assume
that data have the axponential distribution, then we would expect the
cumulative empirical distribution teo appear linear on semilogarithmic
paper. Lf the normal distribution is assumed, we would expect the
cumulative empirical distribution to appear linear on normal probability
paper. Graphic examination is easy and revealing. Whenever applicable,
it should be used.

The x? test is often propesed for testing the appropriateness of
a chosen sampling distribution, but Cochran [2], among other writers,
has shown the inadequacy of this test when the sample size of the
empirical data is limited and the theoretical distribution is skewed.
As an alternative, Cochran suggests the variance test, which generally
has greater power than the xz goodness-of-fit test and does away with
the need for class intervals.

As an example, we describe the variance test when the null hypo-
thesis is that a set of indeapendent observations {xi, i=1,2, ..., N}
came from an exponential distribution with parameter A. Under this

hypothesis we have

E(xi) = 1/X, var(xi) = l/kz.
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As our estimate of A we uge the meximum likelibood sstimatos

]

X = N/(Zx).
{=1
The test statistic is
N (x, - i!i)z
- : ’
-t (8h

-

which is approximately distributed as xz with {N-1) degrees of freedom.
No class intervals are requivred in this test.

The 12 and variance tests both assume independent observations,
an assumption that also simplifies Monte Carle sampling. While i{ts
convenience for testing ls apparent, the credibility of this assumption
is seldom tested. If a sample record is "sufficiently long,” one may
estimate itg spectrum and compare it with the uniform spectxum for an
uncorrelated process.

For short records, spectrum comparisons are not possible., Here
we suggest using nonparametric tests of randomness which do not require
an investigator to make any assumptionsg about the underlying distribu-
tion of sample data. In addition, the appropristeness of rhe tests
do not depend on the sample being large. Walsh {25] 1ists a aumber of
nonparametric testg that can be applied to small samples.

The term “sufficiently long" has an {rritating quality about it
for simulation experimenters. Seldom is enough prior fnformation
available to estimate how long to run an experiment. Nevertheless,
most writers on the statistical analysis of simulation experiments
take the length of the sample record as adequate for the analyses they
propose. In [9] a two-stage technique is described wherein one may
estimate how long an experiment is to be run, The procedure is inte-

grated into a test comparing means, but this should pose no problew
in determining run lengthsg alone.
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STRUCTURE YALIDATION

Having tested assumptions about the data, there remains the task
of validating the structure. If a model resembles realily fairly well,
we expect that lts simulated response to & simulated, but valid, input
should exhibit behavior similar to that cobserved for the real system,
A spectrum asnalysis is again instructive., Testing the homogeneity of
spacikra, one for tha actual system's output and the other for the
slmvlated system's cutput, is easily asccomplished as described in [10)
and [151.

The spectrum comparison applies to testing the homogeneity of
the autocorrelacion structure. <Comparing wmeans is also desirable since
we would expect no difference if the simulation model adequately resem-
bles the true system. Since the output processes are generaily auto-
correlated, a comparison of meaus requires more work and care than in
the case of independent observstions,

The procedures in [8] can easily be modified to compare the
means of the simulated and real systems. The variance of the sample
mean is shown to be proportional to the spactrum at zerc frequency
and, hence, testing means and testing spectra shuw & number of common
features.

Validation, while desir.ble, is not always passible, Each
investigator has the scul-searching responsibility of deciding how
much importance to attach to his results. When nc experience {s
avallable for comparison, an investigator is well advised to proceed
in steps, first implementing results based on simple well-understood
models and then using the results of this implementation to design
more sophisticated models that yield stronger results. 1t is only
through gradual development that a simulation can make any ciaim to
approximate reality. Large scale models that are not amenable to
validation often lead to perplexing, if not misleading, results. This
accurs partly because the complexity of a system confuses a mcdel-
builder and partly because of the zenuous nature of results baged on
cascaded approximations. Despite its difficulty, effort must be

expended on model validation -- first, to give credeuce to results
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within the validated range ol model operations, and serond, to instill
confidence in extrapolations beyons the range of model experience,
Verifying and velidating a wodel cowpvise bul a small share of

the statistical problems in a simulation expeviment., Once gn experi-

mentey accomplishes them, he can begln to exexcise his model to get

answers. His purpose 1s to collect data, reduce them, and make infer-

ences about thewm, as efficiently as possible, We clasgsify the statis-

tical problems he encounters under problem analysis. The way he szolves

these problems strougly influences the quality of his results,
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V. PROBLEM ANALYSIS

One purpose of system simulation axperiments is to compare system
responses to different operaving rules. 1In the simple queueing problem,
for example, we way wish Lo compave the mean queus lengths caused by
given arrival and service rates when different rules are used to assign
priorities to jobs. Ancther purpose i@ to determine functional rela-
tionships between input factors and system response. We may simply
wish to get a “feel” for the way in which input and output relate, or
we way wish to use a determined functional relatfionship in a further
analysis., For example, we may determine a functional relationship
when all inputs are unrestricted and then use this relationship to
find the maximum response when constraints are placed on the lnputs.
In some studies, both purposes enter. For simplicity, we treat them
separately.

Regardless of purpose, there are several statistical guestions
common Lo all problem gnalyses and to structural verification and
validazion as well. One question relates to the choice of sampling
interval: What is the proper interval of simclated time between suc-
cessive observations of a process of interest? Another question is:
How can results be obtained efficiently with a given reliability?

This topic is often discussed under the heading of "varlance reduction
techniques.” Reliability estimation itself poses another statistical
problem in system simulation experiments that must be solved before
one can determine how long to run an exXperiment,

Other statistical questions are peculiar to particular kinds of
experiments, When comparing experiments, one requives statistical
testing procedures. When rvelating response to input, one asks where
R dnput vanges it 19 bast Lo measure response so tUot its fune-
tional form can be most easily identified and its parameters most
reliably estimated,

Measurements made in a simulation experiment can be of two kinds,
One kind measures a system's response to all possible situations.

Here the relevant statistic is a time-integrated average. The

other measures & system'’s response to a specific set of initial
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conditions. Time-integrated averages appear to be the most common
measurement, The simulation literature ls principally concerned with
them, and the discussion here retaing this emphasis. The reader
should not conclude from this that measurement of response to lnitial
conditions is unimportant. In particular the lack of literature on
the subject ghould be taken as a comment on its specialized nature,
not its worth. As the use of simulation Increases, there will be more
concern for measurements of this kind and more will be written about
them. Ag indicated, the discussion from here on will be of experiments
performed with the first kind of measurements inm mind., The remainder
of this section uses the terms "time-integrated average" and “sample

mean® interchangeably.

SAMPLING INTERVAL

When t denotes time the meaning of a time-i{ntegrated average is
clear. When t is a more general ordering index, a time-integrated
average refers to the mean value of a quantitarive characteristic
of a series of events Indexed on t. The temm time-integrated average
remains appropriate since the ordering of events is related to time.

If the index denotes time then the choice of sappling interval
Is crucial {f we hope to extract useful information about the auto-
correlation structurs of a process in an efficfent way. For our pur-
poses a sampling intervil should be small enough so that within it a
process changes little, {f a. all. Process activity, not chronologi-
cal time, dictates the choice of sampling interval, For each experi-~
ment, other than replications, it iz wise to check the adequacy of the
sampling interxrval, since too small an interval causes redundancy in
the dats and too large an {nterval loses information. Biasing an in-
terval downward is more desirable than biasing Lt upward, since redun-
dant data are far less harmful than lost information.

When t denotes an event in an ordered serles, the role of the
sampling interval is changed. Since we simply collect an observation
every time an event occurs, it would seem that we could avoid choosing
a sampling Interval. It may occur, however, that successive events are
80 highly correlated that collecting Iinformation on each event {s highly

o
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redundant. When this is the case 3 judlcious choice of sanpling
interval reduces the nuwber of observations without gacrificing any

significant information.

VARTANCE BEDUCTION TECHNIGUES

It is naturally of interest to obtain experimental resultg with
specified religbility at minjmum cost., Development of variance reduc-
tion techniques was in fact the principal statistical activity inm the
early days of computer simlation (Monte Carlo} experiments. The
importance of thig activity continues to grow with the increasing
complexity of experiments and their concomitant consumption of computer
time.

Hammersley and Handscomb [11] discuss several variance reduction
techniques, among which the method of antithetic variates appears
eadsiest to apply. Page {207 shows its use in & simulated gueueing
problem, Briefly, by generating §, a uniformly digtributed random
nuzber, in one xeplication of an experiment end generating 1-f inm 2
second replication, the method induces negative correiation between
the responses obtained in both replications. The variance of the
average response of the two replications is consequently smaller than
it would be if the replications were independent. Antithetic variates
way also be used with more than two replications.

When the comparisen of experiments is the purpose of a simulation
exercise, one may improve the efficiency of the data-gathering proce-
dure in another way. When testing the difference of two means, for
exsmple, one may reduce the variaace of the difference by choosing
the sample sizes as functions of the variances of the individual sample
means, the computer times required to collect ome obsexrvation in each
experiment, and the degree of correlation between the gample neans.
Inducing a positive correlation between the sample means reduces the
variance of their difference., This can be done, in some cases, by
using the same set of random numbers for both experiments.

As mentioned in Sec. IV, the choice of the number of observations
to collect in emch experiment is a major influence in minimizing the

computer time needed to meet a specified level of accuracy. The
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two-gtage procedure given in (9] offers a ressonably straightforward
way of coming close to the most efficient sample sizes, When the sample
gizes are chosen close to the efficlent solution; a major saving in

computer Lime acorues.

ESTIMATING BELIARILITY

Since experimental results are vandom variables, Lt is lmportent
that their reliability az estimates of populetion parametets be gtated
explicitly. Failure te do 30 cbscures the fact that some resulis may
be better than others. In addition, omitting reliability measures
makes it impossible to determine how such longer to run an experiment
in order to improve its reliabiliity by some fixed ampunt.

Varience reduction techalgues permit us to reduce the computer
time necessary ko obtain a vesulf with a given reliability. We must
alzo have a way of estimatiig the reliablliity of 8 result. This has
long been a major problem area inm simulation expariments.

If a sampling interval £s chosen so that observations are indepen-
dent, then the variance of a time-integrated average or sample mean
is simply the population variance divided by T, the number of observa-
tions., In general, since simulation data are autocoirelated, the
above approach requires finding & sampling interval such that succes-
sive observations are reasonably independent. Mechanic and McXay [ 18]
have investigated this approach.

If, however, one treats a simulated process as a covariance
stationary stochastic process {which it generally is), then the
variance of the sample mean is nwg{0)/T where the function g is defined
in Sec. III, and T is the length of the simulation run. A procedure
for estimating g(0) s glven in (8], but unfortunately it caanot
eaaily be Incorporated inte the experimental run itself.

Another approach {s to sum sample means from independent replica-
tions of the same experiment. The variance of this sup is, of course,
loversely proportional to the number of replications. Using antithetic
variates cam reduce the variance even more by inducing negative corre-
lation between sample means.
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COMPARISON OF EXPERIMERTS

In an experiment, responre ls generally a large-sample, time-
integrated average that satisfles the conditions for asymptotic nonsal-
ity. This fact greatly simplifies testing the diffevence of two means
obtained under different operating rules, since the difference of the
sample means is alsc asymptotically normal., Let the subscripts 1 and
2 denote experiments 1 snd 2, respectively. Then for a given signifi-
cance level @ and tolerance §, we have, under the null hypothesis

of no difference in the means,

prob (!il ~ 22{ £ 8) =1 ~ g,

To test the null hypothesis, we raquire reasonably accurate estimates
of the variances of the sample means. These can be obtainad by proce-
dures described in [9].

The comparison just described is the one most commonly applied in
the analysis of experimental results., Multiple comparisons and oxder-
ing procedures ave desirable when more than two sets of operating rules
are being considered. Their appropriate statistical procedures are
found in texts on the analysis of variance. To our knowledge, no
study has yet appeared that makes a substantive contribution toward
adapting these procedures to the peculiar environment of computer

simulation experiments.

RESPONSE MEASUREMENT

In comparing experiments, one is concerned with the response of
a system to different qualitative factors, such as operating rules,
Alternatively, one may examine the system's response under given oper-
ating rules to changes in quantitative factors, such as different fnput
activity levels. We refer to this analysis as response measurement.
Its purpose is to find a functional form relating the variable param-
eters of an input process to an observed output, and to estimate the

coefficients of the functional fomm.




Consider a simulation with one input x and one ocutput y. For
each experiment, x assumes a fixed value that iz known exactly, vhereas
y agsumes a value from g probability distribucion whose parawelers
ave functions of x; y ig & raudom variable, In a queueluag problem x
might be the mean arrival rate and y the sample mean number of jobs
in quere. If, for zstimatfion purposes, we use the linear least-squares

method, our functional relationship for the iﬁh observation is

Y =0+ Bxi + ¢

i i

Xi = f(xi)
Yi = f(yi).

Toe derive the best linear unbiased estimstes of o and B with the linear
least-squares method, we require

E (ei) = 0

E (Eiej) = 0) t #j

var(Yi) = ¢ for all i.

Some commenly used functional forms are listed below.

£(x) £(y)
1 x y
2 log x ¥
30 x log y
4 log x log ¥
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For a correctly chosen form, the relationship between £{x} and f{y})
will appear linear, Linear, semilog, and log-log graph paper may be
uged to find which velationghip is most appropriate. Other forms may
be examined, but for the moment we zssume thar ons of the esbove toras
will hold. Hoeri [14] describes several techaiques for identifying
the functional form that linearizes the rel:r ionship between x snd vy.
1t is5 convenient to distinguiszh between {wo kinds of observations:
those collected to determine the appropfiate functicnal form, and
those collected to estimate ¢ and B with a given level eof accuracy.
The first set iz a subset of thez second.

To satisfy the above regression model, we requive ail yi’s to be
Aindependent and have a common variance. Independsuce can be gained
by using different random number sejuences in successive simulaiion
runs with each set of input activity lsvels. Por a given variance,
the proper lengrth f a gimulated run may be estimated by the two-stage
procedure to which we have already alluded,

To find a functiomal form it is nacessary to take observations
for a number of input activity levels within the range of activity
levels being considered., As one would expect, the number of such
observations is inversely related to the variance of the observations.
The more relimble the observations, the more confidence one can place
in having ideatified an appropriate functional form for a given number
of observations,

Ouce an eppropriate functional form is found, one uses the obsger-
vations already collected to estimate the coefficients. Additional
observations may be ¢ollected and used to improve the reliability of
the estimates . The objective at this step is efficiency ~- the
congexrvation of computer time. If the computer times required to
collect all yi's with equal variance are the same, taking additional
cbgervations at the ends of the x range minimizes the computer time
necessary to improve the reliabiliey of the estimated coefficients
by a glvea amount, In general, the computer times roquired to collect
observations with common variance do differ and, hence, the choice of
wliere to collect observations is not so simple, Liteti -, if anything,
has been published about this problem. lis solution wiil undoubtedly
improve the efficient perfermance of simulation experiments.
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1t may occur that a priori theory suggests a model of the form,

R
- J
Y, g+z By X + g
f=1

This model, uniike the one ahove, does not exclusively take observa-
tious acr the and points of the iudependent variable range to minimize
the sample size needed for & given accuracy. The points at which
obgervations should be taken are given by the zeros of a polynomial
which {3 the integral of one of the Legendre polynomizls [13],

Reaponse surface exploration, optimum geeking methods, and sequen~
tial experimencation are all topics germane to the analysis of computer
simulation experiments, Cochran and Cox [3] describe the principles
of response surface methodology, and Hill and Hunter [12] list a
number of papers covering different aspects of the topic, Draper and
Smith [6] describe procedures for applying a variety of linear regres-
sion anslyses. Wilde [26] describes simple methods for finding
maxime and minime. Cochran and Cox also discuss sequential experimen-
tation, Although these methods contribute gignificantly to the
statistical analygis of experiments, they remain to be integrated into
a general procedure that takes due cognizance of the peculiarities
of computer simulation experiments,
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